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Abstract

Incremental harmonic balance (IHB) formulations are derived for general multiple degrees of freedom
(d.o.f.) non-linear autonomous systems. These formulations are developed for a concerned four-d.o.f.
aircraft wheel shimmy system with combined Coulomb and velocity-squared damping. A multi-harmonic
analysis is performed and amplitudes of limit cycles are predicted. Within a large range of parametric
variations with respect to aircraft taxi velocity, the IHB method can, at a much cheaper cost, give results
with high accuracy as compared with numerical results given by a parametric continuation method. In
particular, the IHB method avoids the stiff problems emanating from numerical treatment of aircraft wheel
shimmy system equations. The development is applicable to other vibration control systems that include
commonly used dry friction devices or velocity-squared hydraulic dampers.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Aircraft wheel shimmy is a self-excited oscillation caused by coupling of the lateral deflections
and torsional oscillations about the gear swivel axis. The basic cause of shimmy is an energy
transfer from the moving aircraft to the vibratory modes of the landing-gear system [1]. Increasing
emphasis on reducing the weight of landing gear systems in modern aircraft has, in many cases,
induced shimmy problems.
A great deal of researches has been devoted to aircraft wheel shimmy problems involving tests,

analyses, and remedies to minimize or eliminate shimmy [2–10]. Most of the analytical studies are
linear shimmy analyses in nature. Although linear description of the shimmy mechanism will
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usually reveal basic characteristics, it will generally fail to accurately predict the behavior of a
landing gear system due to various inherent non-linearities such as non-linear tire/ground
interactions, Coulomb friction in the strut oleos, lateral and torsional clearances in the torque
links, and the quadratic damping of hydraulic shimmy damper [11].
Few analytical solutions to non-linear aircraft wheel shimmy problems have appeared in the

published literature. Gordon Jr. [11] used a perturbation method to predict amplitudes of a two-
d.o.f. non-linear shimmy system with velocity-squared damping. The predicted results confine its
validity within a very narrow range of taxi velocity, i.e. taxi velocity less than 15 m=s: Burton [12]
used the describing function method, which can be considered surrogate single-harmonic analysis
technique, to analyze the non-linear motion of landing gear system with non-linear hydraulic
steering subsystem. This approach results in a linearization process and the limit cycle amplitudes
as well as stability boundaries are predicted using the linear system techniques. A similar
approach was also adopted by Grossman [13] to obtain the equivalent damping and stiffness
coefficients with respect to clearance, Coulomb friction and velocity-squared damping
respectively. It is noteworthy that there exist another type of non-linear shimmy problems which
can be classified as parametric shimmy. Parametric shimmy is caused by wheel unbalance and tire
imperfections, and has been studied by Zhou and Zhu [14], Ho and Lai [15] and Nybakken [16]
using classical perturbation methods.
It is well known that the common weakness of classical perturbation methods and equivalent

linearization approaches restricts them to solving problems with weak non-linearities and within a
narrow range of parametric variations. Although capable of treating strongly non-linear
problems, numerical integration method is, on the other hand, inefficient for performing
parametric studies. Furthermore, some special problems such as stiff problems will, with reference
to aircraft wheel shimmy system, arise from numerical method [17]. Therefore, special measures
and small step size are needed which make parametric studies extremely expensive.
The incremental harmonic balance (IHB) method is a powerful approach with unique

advantages: it is capable of dealing with strongly non-linear systems to any desired accuracy, and
it is ideally suited to large range parametric studies [18,19]. It was proposed originally by Cheung
and Lau [20–22], and has been developed further and successfully applied to various non-linear
problems [19]. Among these developments, some developments should be stressed because of their
practical significance: Cheung et al. [18] applied the IHB method to cubic non-linear systems;
Pierre et al. [23] modified the IHB method to analyze dry friction; Lau and Zhang [24] generalized
the method to deal with piecewise-linear systems; Lau and Yuen [25] used the method to perform
parametric studies on the Hopf bifurcation and limit cycle problems. Raghothama and
Narayanan [26] used IHB method to investigate periodic oscillations and bifurcations of a two-
dimensional airfoil in plunge and pitching motions with cubic pitching stiffness in incompressible
flow.
In this paper, efforts are devoted to the application of the IHB method to a four-d.o.f. non-

linear aircraft wheel shimmy system. Emphases are put on the detailed IHB formulations of
velocity- squared damping which are much complicated than the counterpart of Coulomb
damping. Limit cycle amplitudes of wheel shimmy are predicted using various harmonic terms.
The IHB results are compared, within a large range of aircraft taxi velocity from 10 to 100 m=s;
with numerical results given by a parametric continuation method [27,28]. Only four harmonic
terms can produce results with high accuracy as compared to numerical results. Great importance
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lies in the fact that the IHB method is much faster and cheaper than numerical method and avoid
stiff issue involved in numerical method.

2. Incremental harmonic balance method for multi-d.o.f. autonomous systems

For a multi-d.o.f. autonomous system, the non-linear equations, in general, have the following
form:

o2 %M.qþ o %C’qþ %Kqþ %fðq; ’q;o; lÞ ¼ 0; ð1Þ

where the dots denote derivatives with respect to the dimensionless time t; and o is the oscillation
frequency and l is the parameter incorporated for the purpose of parametric studies. q ¼
fq1; q2;y; qng

T is the vector consisting of the unknowns of the system, and %f is a non-linear
function of o; l; the dependent variable q and its velocity ’q; %M; %C and %K are mass, linear viscous
damping and linear stiffness matrices respectively.
The first step of the IHB method is a Netwon–Raphson procedure. Letting q0; o0 and l0 denote

a state of vibration in hand, the neighboring state can be expressed by adding the corresponding
increments to them as follows:

q ¼ q0 þ Dq; o ¼ o0 þ Do; l ¼ l0 þ Dl; ð2Þ

where

q0 ¼ fq10; q20;y; qn0g
T; Dq ¼ fDq1;Dq2;y;Dqng

T: ð3Þ

Substituting expressions (2) into Eq. (1) and neglecting small terms of higher order, one obtains
the following linearized incremental equation:

o2
0
%MD.qþ ðo0 %Cþ %CNÞD’qþ ð %Kþ %KNÞDq ¼ %R� ð2o0 %M.q0 þ %C’q0 þ %QÞDo� %PDl; ð4Þ

where

%KN ¼
@%f

@q

� �
0

; %CN ¼
@%f

@’q

� �
0

; %Q ¼
@%f

@o

� �
0

; %P ¼
@%f

@l

� �
0

; ð5Þ

%R ¼ �ðo2
0
%M.q0 þ o0 %C’q0 þ %Kq0 þ %f0Þ: ð6Þ

If the system concerned is an odd system, the steady state response can be expressed as the sum of
N odd harmonic terms as follows [18]:

qj0 ¼
XN

K¼1

½ajK cosð2K � 1Þtþ bjK sinð2K � 1Þt	 ¼ CsAj; ð7Þ

Dqj0 ¼
XN

K¼1

½DajK cosð2K � 1Þtþ DbjK sinð2K � 1Þt	 ¼ CsDAj; ð8Þ

where

Cs ¼ fcos t; cos 3t;y; cosð2N � 1Þt; sin t; sin 3t;y; sinð2N � 1Þtg; ð9Þ

Aj ¼ faj1; aj2;y; ajN ; bj1; bj2;y; bjNg
T: ð10Þ
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The vectors of unknowns and their increments can be expressed as follows:

q0 ¼ SA; Dq0 ¼ SDA; ð11Þ

where

A ¼ fA1;A2;y;Ang
T; DA ¼ fDA1;DA2;y;DAng

T; S ¼

Cs

Cs

&

Cs

2
6664

3
7775: ð12Þ

Substituting expression (11) into Eq. (4) and performing the Galerkin procedure giveZ 2p

0

dðDqÞT½o2
0
%MD.qþ ðo0 %C þ %CNÞD’qþ ð %Kþ %KNÞDq	 dt

¼
Z 2p

0

dðDqÞT½ %R� ð2o0 %M.q0 þ %C’q0 þ %QÞDo� %PDl	 dt: ð13Þ

A set of linear equations in terms of DA; Do and Dl can be obtained readily

KmcDA ¼ R� RmcDo� PDl; ð14Þ

where

Kmc ¼ o2
0Mþ o0Cþ CN þ Kþ KN ; ð15Þ

R ¼ �ðo2
0Mþ o0Cþ KÞA� f0; ð16Þ

Rmc ¼ ð2o0Mþ CÞAþQ; ð17Þ

M ¼
Z 2p

0

ST %M .S dt; C ¼
Z 2p

0

ST %C ’S dt; K ¼
Z 2p

0

ST %KS dt; ð18Þ

CN ¼
Z 2p

0

ST %CN
’S dt; KN ¼

Z 2p

0

ST %KNS dt; ð19Þ

f0 ¼
Z 2p

0

ST%f0 dt; Q ¼
Z 2p

0

ST %Q dt; P ¼
Z 2p

0

ST %P dt: ð20Þ

It should be noted that in Eq. (14) the number of incremental unknowns is greater than the
number of equations available due to the existence of Do and Dl: A simple approach is adopted
herein [25]. As far as only the limit cycles are concerned, l is taken to be the control parameter (i.e.
Dl ¼ 0) while Do should be regarded as an unknown. Therefore, one of the Fourier coefficients
has to be fixed (e.g., ai ¼ 0 or bj ¼ 0) to take the number of equations equal to that of the
unknowns. As indicated in Ref. [25], this will not cause any effects for autonomous system but it
only represents a shift of one of dependent variable qi on the time axis. Eq. (14) can be solved by a
Newton–Raphson iteration scheme for a particular l; and it is then added by an increment Dl and
a new solution is sought by iteration. By successive use of augmentation and iteration process, a
solution diagram may easily be traced.
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It is worth mentioning that the entries of mass, linear damping and linear stiffness matrices
given in Eq. (18) can be expressed explicitly for the purpose of simplicity. To do that, the
following notations for mass matrix are introduced and the linear damping and stiffness matrices
can be treated in a similar manner:

%M ¼ ½ %mij	; M ¼ ½Mij	; Mij ¼
Z 2p

0

CT
s %mij

.Cs dt; ½Mij	 ¼
½Mij;11	 ½Mij;12	

½Mij;21	 ½Mij;22	

" #
ð21Þ

in which i; j ¼ 1; 2;y; n: From expressions (18), one can obtain the entries corresponding to the
kth row and lth column element of each submatrices (e.g., ½Mij;11	kl denotes the kth row and lth
column element of submatrix ½Mij;11	) as follows:

½Mij;11	kl ¼ � %mijdklpð2l � 1Þ2; ½Mij;12	kl ¼ ½Mij;21	kl ¼ 0; ½Mij;22	kl ¼ � %mijdklpð2l � 1Þ2; ð22Þ

½Cij;11	kl ¼ 0; ½Cij;12	kl ¼ %cijdklpð2l � 1Þ; ½Cij;21	kl ¼ �%cijdklpð2l � 1Þ; ½Cij;22	kl ¼ 0; ð23Þ

½Kij;11	kl ¼ %kijdklp; ½Kij;12	kl ¼ 0; ½Kij;21	kl ¼ 0; ½Kij;22	kl ¼ %kijdklp; ð24Þ

where dkl is the Kronecker delta function. Expressions given in Eqs. (22)–(24) can simplify the
programming and avoid the integration involved in Eq. (18). This rule is complied with in the
following, and explicit expressions are given provided the integration can be calculated analytically.
For non-linear parts of matrices and vectors, analytical expressions are not available and resort

must be made to numerical calculation. The same matrix and vector splitting scheme as given in
Eq. (21) is used for non-linear damping matrix CN and vector f0; and they can be written as follows:

%CN ¼ ½%cNij	; CN ¼ ½CNij	; CNij ¼
Z 2p

0

CT
s %cNij

’Cs dt; ½CNij	 ¼
½CNij;11	 ½CNij;12	

½CNij;21	 ½CNij;22	

" #
; ð25Þ

%f0 ¼ f %f01; %f02; %f03;y; %f0ng
T; f0 ¼ ff01; f02; f03;y; f0ng

T; f0i ¼
Z 2p

0

CT
s
%f0i dt; f0i ¼

f0i1

f0i2

" #
: ð26Þ

Similar expressions exist for non-linear stiffness matrix KN and vector Q:

3. IHB Formulations of an aircraft wheel shimmy system with combined Coulomb and quadratic

damping

For a four-d.o.f. non-linear aircraft wheel shimmy system, the analytical model and the non-
linearity are presented in Figs. 1 and 2 respectively. The non-linear equations of this autonomous
system can be written as follows:

ILG
.ys þ mHt.yþ Iwp

V

r
’y� b sin k=V ’y þ K11ys þ K12yþ K14y ¼ 0; ð27Þ

mHt.ys þ I .y� Iwp
V

r
’ys þ

b cos k

V
’y þ K21ys þ K22yþ K24y

þ TCF signð’yÞ þ Ktðy� y1Þ ¼ 0; ð28Þ
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Ib .y1 þ Ct
’y1 þ Cd

’y21 signð’y1Þ � Ktðy� y1Þ ¼ 0; ð29Þ

.y þ bV ’y þ K41ys þ K42yþ K44y ¼ 0; ð30Þ

where signð’yÞ is the sign function; ys; y1; y; and y are the lateral tilt angle of strut, the torsional
angle of shimmy damper, the swiveling angle of the wheel about pivot and the lateral
displacement of tire respectively; V is aircraft taxi velocity; m is the wheel mass, and ILG; I ; Iwp and
Ib are moment of inertia of the landing gear system about trunion, moment of inertia of wheel
about strut axle, moment of inertia of wheel about wheel axle, and moment of inertia of shimmy
damper respectively; Ks is the lateral tilt stiffness of strut, Kt is the torsional stiffness of damper
linkage system; Ct is the linear damping coefficient of shimmy damper, and Cd is the quadratic
damping coefficient of damper; TCF is the torque due to Coulomb friction; H and t are
the distance from trunion to axle and the trail length and shown in Fig. 1 respectively; b and b
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are tire rolling coefficient and tire torsional stiffness coefficient respectively; k is the longitudinal
tilt angle of strut and Kij ði; j ¼ 1; 2; 3; 4Þ are the equivalent stiffness coefficients.
Recalling Eq. (1) from Eqs. (27)–(30) one can write

q1 ¼ ys; q2 ¼ y; q3 ¼ y1; q4 ¼ y; l ¼ V ð31Þ

and

%f ¼ f0;TCF signð ’q2Þ;Cdo2q23 signð ’q3Þ; 0g
T: ð32Þ

Using the definitions given in Eq. (5) gives

%cN22 ¼ 2TCFdð ’q20Þ; ð33Þ

%cN33 ¼ 2Cdo2
0½ ’q30 signð ’q30Þ þ ’q230dð ’q30Þ	; %cNij ¼ 0; ia3 or ja3; ð34Þ

%KN ¼ 0; %P ¼ 0; %Q ¼ f0; 0; 2Cdo0 ’q
2
30 signð ’q30Þ; 0g

T; ð35Þ

where dð ’q20Þ is the Dirac delta function, and Eq. (33) can be obtained, referring to Ref. [23] for
details, by taking the derivative of sign function into account.
From Eqs. (25), (26) and (32)–(35), it is clear that the evaluation of the components of CNij ; f0i

andQi requires a knowledge of the zeros of the function ’q20 or the function ’q30: This is achieved at
each iteration using the bisection and secant methods. Let t1; t2;y; tM 0 be the M 0 zeros of ’q20; for
example, and s1; s2;y; sM 0þ1 be the sign of ’q20; respectively, in the intervals ½t0; t1	;
½t1; t2	;y; ½tM 0 ; tM 0þ1	; with t0 ¼ 0 and tM 0þ1 ¼ 2p: Pierre [23] presented detailed formulations
to calculate the non-linear terms stemming from Coulomb damping, and the details are omitted
here. The results are summarized as follows:

½CN22;11	kl ¼ 2ð2l � 1ÞTCF

XM 0

v¼1

cosð2k � 1Þtv sinð2l � 1Þtv=F2ðtvÞ; ð36Þ

½CN22;12	kl ¼ �2ð2l � 1ÞTCF

XM 0

v¼1

cosð2k � 1Þtv cosð2l � 1Þtv=F2ðtvÞ; ð37Þ

½CN22;21	kl ¼ 2ð2l � 1ÞTCF

XM 0

v¼1

sinð2k � 1Þtv sinð2l � 1Þtv=F2ðtvÞ; ð38Þ

½CN22;22	kl ¼ �2ð2l � 1ÞTCF

XM 0

v¼1

sinð2k � 1Þtv cosð2l � 1Þtv=F2ðtvÞ; ð39Þ

½f021	k ¼
TCF

2k � 1

XM 0

v¼0

svþ1½sinð2k � 1Þtvþ1 � sinð2k � 1Þtv	; ð40Þ

½f022	k ¼
TCF

2k � 1

XM 0

v¼0

svþ1½cosð2k � 1Þtv � cosð2k � 1Þtvþ1	 ð41Þ
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in which

FiðtvÞ ¼
XN

u¼1

ð2u � 1Þ2½aiu cosð2u � 1Þtv þ biu sinð2u � 1Þtv	: ð42Þ

In the following, emphasis is placed on the derivation of non-linear terms arising from
quadratic damping, since the formulations are much more complicated than that of Coulomb
damping. From Eq. (7) one can write

’q30 ¼
XN

n¼1

ð2n � 1Þ½�a3n sinð2n � 1Þtþ b3n cosð2n � 1Þt	; ð43Þ

’q230 ¼ 1=2
XN

n¼1

XN

m¼1

ð2n � 1Þð2m � 1Þ½ða3na3m þ b3nb3mÞcosð2n � 2mÞt

þ ð�a3na3m þ b3nb3mÞcosð2n þ 2m � 2Þtþ ð�a3nb3m þ b3na3mÞsinð2n � 2mÞt

þ ð�a3nb3m � b3na3mÞsinð2n þ 2m � 2Þt	: ð44Þ

Substituting Eqs. (43) and (44) into Eq. (34) and considering Eq. (25) gives

½CN33;11	kl ¼ �2ð2l � 1ÞCdo2
0

Z 2p

0

½ ’q30 signð ’q30Þ þ ’q230dð ’q30Þ	cosð2k � 1Þt sinð2l � 1Þt dt; ð45Þ

½CN33;12	kl ¼ 2ð2l � 1ÞCdo2
0

Z 2p

0

½ ’q30 signð ’q30Þ þ ’q230dð ’q30Þ	cosð2k � 1Þt cosð2l � 1Þt dt; ð46Þ

½CN33;21	kl ¼ �2ð2l � 1ÞCdo2
0

Z 2p

0

½ ’q30 signð ’q30Þ þ ’q230dð ’q30Þ	 sinð2k � 1Þt sinð2l � 1Þt dt; ð47Þ

½CN33;22	kl ¼ 2ð2l � 1ÞCdo2
0

Z 2p

0

½ ’q30 signð ’q30Þ þ ’q230dð ’q30Þ	 sinð2k � 1Þt cosð2l � 1Þt dt: ð48Þ

Efforts are devoted here to express Eqs. (45)–(48) to facilitate computer programming. To do
that, we introduce

Gði; a3n; b3nÞ ¼ a3nðsin itvþ1 � sin itvÞ=i � b3nðcos itvþ1 � cos itvÞ=i: ð49Þ

Pði; a3n; b3nÞ ¼ a3nðcos itvþ1 � cos itvÞ=i þ b3nðsin itvþ1 � sin itvÞ=i: ð50Þ

Here t1; t2;y; tM be the M zeros of ’q30; for example, and s1; s2;y; sMþ1 be the sign of ’q30
following the fashion of ’q20: The first part in the integrals in Eqs. (45)–(48) then can be calculated
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from the following expressions:Z 2p

0

’q30 signð ’q30Þcosð2k � 1Þt sinð2l � 1Þt dt

¼
1

4

XM

v¼0

svþ1

XN

n¼1

ð2n � 1ÞfGð2n þ 2k þ 2l � 3; a3n; b3nÞ � Gð2n � 2k � 2l þ 1; a3n; b3nÞ

(

� Gð2n þ 2k � 2l � 1; a3n; b3nÞ þ Gð2n � 2k þ 2l � 1; a3n; b3nÞg

)
; ð51Þ

Z 2p

0

’q30 signð ’q30Þcosð2k � 1Þt cosð2l � 1Þt dt

¼
1

4

XM

v¼0

svþ1

XN

n¼1

ð2n � 1ÞfPð2n þ 2k þ 2l � 3; a3n; b3nÞ þPð2n � 2k � 2l þ 1; a3n; b3nÞ

(

þPð2n þ 2k � 2l � 1; a3n; b3nÞ þPð2n � 2k þ 2l � 1; a3n; b3nÞg

)
; ð52Þ

Z 2p

0

’q30 signð ’q30Þsinð2k � 1Þt sinð2l � 1Þt dt

¼
1

4

XM

v¼0

svþ1

XN

n¼1

ð2n � 1Þf�Pð2n þ 2k þ 2l � 3; a3n; b3nÞ �Pð2n � 2k � 2l þ 1; a3n; b3nÞ

(

þPð2n þ 2k � 2l � 1; a3n; b3nÞ þPð2n � 2k þ 2l � 1; a3n; b3nÞg

)
; ð53Þ

Z 2p

0

’q30 signð ’q30Þcosð2k � 1Þt sinð2l � 1Þt dt

¼
1

4

XM

v¼0

svþ1

XN

n¼1

ð2n � 1ÞfGð2n þ 2k þ 2l � 3; a3n; b3nÞ � Gð2n � 2k � 2l þ 1; a3n; b3nÞ

(

þ Gð2n þ 2k � 2l � 1; a3n; b3nÞ � Gð2n � 2k þ 2l � 1; a3n; b3nÞg

)
: ð54Þ

Let

LðtvÞ ¼
XN

n¼1

XN

m¼1

ð2n � 1Þð2m � 1Þfða3na3m þ b3nb3mÞcosð2n � 2mÞtv

(

þð�a3na3m þ b3nb3mÞcosð2n þ 2m � 2Þtv þ ð�a3nb3m þ b3na3mÞsinð2n � 2mÞtv

� ða3nb3m þ b3na3mÞsinð2n þ 2m � 2Þtvg

)
=F3ðtvÞ; ð55Þ
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where F3ðtvÞ is given in Eq. (42), then the second part in the integrals in Eqs. (45)–(48) can be
calculated from the following expressions:Z 2p

0

’q230dð ’q30Þcosð2k � 1Þt sinð2l � 1Þt dt ¼ �
1

2

XM

v¼1

LðtvÞcosð2k � 1Þtv sinð2l � 1Þtv; ð56Þ

Z 2p

0

’q230dð ’q30Þcosð2k � 1Þt cosð2l � 1Þt dt ¼ �
1

2

XM

v¼1

LðtvÞcosð2k � 1Þtv cosð2l � 1Þtv; ð57Þ

Z 2p

0

’q230dð ’q30Þsinð2k � 1Þt sinð2l � 1Þt dt ¼ �
1

2

XM

v¼1

LðtvÞsinð2k � 1Þtv sinð2l � 1Þtv; ð58Þ

Z 2p

0

’q230dð ’q30Þsinð2k � 1Þt cosð2l � 1Þt dt ¼ �
1

2

XM

v¼1

LðtvÞsinð2k � 1Þtv cosð2l � 1Þtv: ð59Þ

In a similar manner, if one designates

YsðiÞ ¼ ½sinðitvþ1Þ � sinðitvÞ	=i; YcðiÞ ¼ ½cosðitvþ1Þ � cosðitvÞ	=i; ð60Þ

Ok ¼
XN

n¼1

XN

m¼1

ð2n � 1Þð2m � 1Þfða3na3m þ b3nb3mÞ½Ysð2n � 2m þ 2k � 1Þ

þYsð2n � 2m � 2k þ 1Þ	

þ ð�a3na3m þ b3nb3mÞ½Ysð2n þ 2m þ 2k � 3Þ þYsð2n þ 2m � 2k � 1Þ	

þ ða3nb3m � b3na3mÞ½Ycð2n � 2m þ 2k � 1Þ þYcð2n � 2m � 2k þ 1Þ	

þ ða3nb3m þ b3na3mÞ½Ycð2n þ 2m þ 2k � 3Þ þYcð2n þ 2m � 2k � 1Þ	g ð61Þ

and

Ck ¼
XN

n¼1

XN

m¼1

ð2n � 1Þð2m � 1Þfða3na3m þ b3nb3mÞ½�Ycð2n � 2m þ 2k � 1Þ

þYcð2n � 2m � 2k þ 1Þ	

þ ð�a3na3m þ b3nb3mÞ½�Ycð2n þ 2m þ 2k � 3Þ þYsð2n þ 2m � 2k � 1Þ	

þ ða3nb3m � b3na3mÞ½Ysð2n � 2m þ 2k � 1Þ �Ysð2n � 2m � 2k þ 1Þ	

þ ða3nb3m þ b3na3mÞ½Ysð2n þ 2m þ 2k � 3Þ �Ysð2n þ 2m � 2k � 1Þ	g ð62Þ

one can obtain

½f031	k ¼
Z 2p

0

%f03 cosð2k � 1Þt dt ¼ 1
4

Cdo2
0

XM

v¼0

svþ1Ok; ð63Þ

½f032	k ¼
Z 2p

0

%f03 sinð2k � 1Þt dt ¼ 1
4

Cdo2
0

XM

v¼0

svþ1Ck; ð64Þ
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and

½Q31	k ¼
2

o0
½f031	k; ½Q32	k ¼

2

o0
½f032	k: ð65Þ

4. Numerical results

With all the above IHB formulations in hand, the implementation procedure is straightforward.
A computer code is written to analyze the wheel shimmy of a fighter using IHB method. Four
different cases are studied: system with friction torque TCF ¼ 5:0 N m and quadratic damping
coefficient Cd ¼ 5:0 N m s2; system with friction torque TCF ¼ 20:0 N m and quadratic damping
coefficient Cd ¼ 10:0 N m s2; system with friction torque TCF ¼ 15:0 N m and quadratic damping
coefficient Cd ¼ 20:0 N m s2; and system with friction torque TCF ¼ 10:0 N m and quadratic
damping coefficient Cd ¼ 50:0 N m s2: Taking one harmonic term and four harmonic terms into
consideration, the IHB results for limit cycle amplitudes which correspond to these four cases are
presented and compared with numerical results. The numerical results are obtained by a
parametric continuation method which combines shooting technique, arc-length technique and
continuation method to form a versatile tool for various non-linear vibration problems [27,28].
Figs. 3–6 indicate that, within a large range of aircraft taxi velocity from 10 to 100 m=s; good
agreements are obtained between IHB results and numerical results, which demonstrate the
correctness and effectiveness of the proposed method. Furthermore, four harmonic terms can give
IHB results nearly identical to numerical results with regard to limit cycle amplitudes. This proves
the method has a good convergent property.
It should be noted that in Eqs. (27)–(30) Ib{I ; this causes stiff problems using numerical

methods to solve Eqs. (27)–(30) [17]. Ill-conditions of the equations may cause unstable solutions
and loss of convergence in parametric continuation method. Therefore, small step sizes are used to
guarantee obtaining stable convergent numerical solutions. This causes the parametric studies of
aircraft wheel shimmy analysis to be extremely expensive. On the contrary, the IHB method, at
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the price of tedious but once-done IHB derivations, bears the merits of efficiency, good
convergence and particular avoidance of stiff problems for aircraft wheel shimmy system.

5. Conclusions

IHB formulations for a four-d.o.f. autonomous aircraft wheel shimmy system are presented
with emphases put on the detailed derivations of non-linear terms arising from quadratic velocity-
squared damping. The development presented in this paper, we believe, is of great importance due
to common applications of hydraulic dampers, which in general exhibit a non-linear velocity-
squared damping characteristics. Furthermore, it is also of practical significance since numerical
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methods may suffer from stiff problems for particular aircraft wheel shimmy system, and the IHB
method constitutes great advantages over numerical methods for large range parametric studies.
The IHB method is not limited to weak non-linearity and can provide results of good accuracy
within a large range of parametric variations. Four different cases are studied by IHB method and
the IHB results are compared with numerical results for limit cycle amplitudes. Good agreements
are obtained within a large range of aircraft taxi velocity from 10 to 100 m=s; and four harmonic
terms are found to be adequate for good accuracy at a much cheaper cost as compared with
numerical methods. The numerical results demonstrate the correctness and effectiveness of
present development, and it can be used for non-linear dynamic analysis of other systems with dry
friction devices or hydraulic dampers.
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